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A B S T R A C T

3D scene shape retrieval is a brand new but important research direction in content-based 3D shape retrieval.
To promote this research area, two Shape Retrieval Contest (SHREC) tracks on 2D scene sketch-based and
image-based 3D scene model retrieval have been organized by us in 2018 and 2019, respectively. In 2018,
we built the first benchmark for each track which contains 2D and 3D scene data for ten (10) categories,
while they share the same 3D scene target dataset. Four and five distinct 3D scene shape retrieval methods
have competed with each other in these two contests, respectively. In 2019, to measure and compare the
scalability performance of the participating and other promising Query-by-Sketch or Query-by-Image 3D scene
shape retrieval methods, we built a much larger extended benchmark for each type of retrieval which has
thirty (30) classes and organized two extended tracks. Again, two and three different 3D scene shape retrieval
methods have contended in these two tracks, separately. To solicit state-of-the-art approaches, we perform a
comprehensive comparison of all the above methods and an additional new retrieval methods by evaluating
them on the two benchmarks. The benchmarks, evaluation results and tools are publicly available at our track
websites (Yuan et al., 2019 [1]; Abdul-Rashid et al., 2019 [2]; Yuan et al., 2019 [3]; Abdul-Rashid et al., 2019
[4]), while code for the evaluated methods are also available: http://github.com/3DSceneRetrieval.
. Introduction

Currently, there is a lot of research in 3D model retrieval, which
sually targets the problem of retrieving a list of candidate 3D models
sing a single sketch, image, or model as input. 3D scene shape retrieval
s a brand new research topic in the field of 3D object retrieval. Tradi-
ional 3D model retrieval ideally assumes that each query contains only

∗ Correspondence to: 730 East Beach Blvd, Long Beach, MS 39560, United States of America.
E-mail address: bo.li@usm.edu (B. Li).

a single object. However, 3D scene retrieval is a different and new type
of 3D model retrieval which involves 2D/3D scenes comprising multiple
objects that may overlap each other and also having spatial context
configuration information. It is more challenging, but also has vast
applications such as 3D scene reconstruction, autonomous driving cars,
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3D geometry video retrieval, and 3D AR/VR entertainment. Therefore,
this research topic deserves our further exploration.

Depending on the queries, 3D scene shape retrieval can be di-
vided into three schemes: Query-by-Sketch, Query-by-Image, Query-
by-Model. In this paper, we only cover the first two types of retrieval
schemes.

Query-by-Sketch (Sketch-based) 3D scene shape retrieval is to
retrieve relevant 3D scenes using a 2D scene sketch as input. It has the
intuitiveness advantage over other two schemes and is also convenient
for users to learn and retrieve 3D scenes. This retrieval scheme is also
very promising and has great potential in many applications such as 3D
scene reconstruction, 3D geometry video retrieval, virtual reality (VR)
and augmented reality (AR) in 3D Entertainment like Disney World’s
Avatar Flight of Passage Ride (Wikipedia, 2019; Attractions, 2019; the
Magic, 2019). However, although there are many existing 2D sketch-
based 3D shape retrieval systems, there is little existing research work
on 2D scene sketch-based 3D scene retrieval due to two major reasons:
(1) It is challenging to collect a large-scale 3D scene dataset and there
exists a very limited number of available 3D scene shape benchmarks;
(2) Like 2D sketch-based 3D shape retrieval, there is a big semantic gap
between the iconic representation of 2D scene sketches and the accurate
3D coordinate representations of 3D scenes. All of the above reasons
make the task of retrieving 3D scene models using 2D scene sketch
queries a challenging, although interesting and promising, research
direction.

Query-by-Image (Image-based) 3D scene shape retrieval is an in-
tuitive and convenient framework which allows users to learn, search,
and utilize the retrieved results for related applications. For example,
it can be applied in automatic 3D content generation based on one
or a sequence of captured images for AR/VR applications. Other ap-
plication scenarios include: autonomous driving cars, 3D movie, game
and animation production, and robotic vision (i.e. path finding). In
addition, we can also utilize it in developing consumer electronics apps,
which facilitate users to efficiently generate a 3D scene after taking an
image of a real scene. Last but not least, it is also very promising and
has great potential in other related applications such as 3D geometry
video retrieval, and highly capable autonomous vehicles like the Re-
nault SYMBIOZ (Renault, 2019; Tips, 2019). However, there is little
research in 2D scene image-based 3D scene shape retrieval (Merrell
et al., 2011; Xu et al., 2016) due to at least two reasons: (1) the
problem itself is challenging to cope with; (2) lack of related retrieval
benchmarks. Seeing the benefit of advances in retrieving 3D scene
models using 2D scene image queries makes the research direction
meaningful, interesting and promising.

To promote the research on 3D scene shape retrieval, during the
past two years (2018 and 2019), we have successfully organized four
Shape Retrieval Contest (SHREC) tracks (Yuan et al., 2018; Abdul-
Rashid et al., 2018; Yuan et al., 2019c; Abdul-Rashid et al., 2019) on
the research topic of 3D scene retrieval: one for Query-by-Sketch and
one for Query-by-Image during each year. In 2018, starting from a 2D
scene sketch dataset named Scene250 (Ye et al., 2016) which consists
of 250 2D scene sketches that are equally classified into 10 classes,
we built the first 2D scene sketch-based 3D scene retrieval benchmark
SceneSBR2018 by collecting 100 3D scene models for each class from
3D Warehouse (Trimble, 2018). Based on this benchmark, we organized
the SHREC’18 2D scene sketch-based 3D scene retrieval track (Yuan
et al., 2018). Considering the popularity of 2D scene images that also
can be used as queries, we further collected 1000 2D scene images for
each class as the new query dataset, and then still used the same 3D
scene model target dataset that we already had in the SceneSBR2018
benchmark to curate the first 2D scene image-based 3D scene re-
trieval benchmark SceneIBR2018. Similarly, we organized another
SHREC’18 track on 2D scene image-based 3D scene retrieval (Abdul-
Rashid et al., 2018). We combine these two benchmarks SceneSBR2018
and SceneIBR2018 to form our basic 2D scene sketch/image-based 3D

scene retrieval benchmark Scene_SBR_IBR_2018.
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However, as can be seen, Scene_SBR_IBR_2018 contains only 10
distinct scene classes, and this is also one of the reasons that all
the three deep learning-based participating methods have achieved
excellent performance on it. Considering this, after the track we have
tripled (Yuan et al., 2019b) the size of Scene_SBR_IBR_2018, resulting
in an extended benchmark Scene_SBR_IBR_2019, which has 750 2D
scene sketches, 30,000 2D scene images, and 3000 3D scene models.
Similarly, all the 2D scene sketches and images, as well as 3D scene
models are equally classified into 30 classes. We have kept the same
set of 2D scene sketches and images, and 3D scene models belonging to
the initial 10 classes of Scene_SBR_IBR_2018. Based on the extended
benchmark Scene_SBR_IBR_2019, in 2019 in a similar way we orga-
nized the SHREC’19 extended 2D scene sketch-based 3D scene retrieval
(SceneSBR2019) track (Yuan et al., 2019c) and the SHREC’19 extended
2D scene image-based 3D scene retrieval (SceneIBR2019) track (Abdul-
Rashid et al., 2019). Our main purpose for organizing these two tracks
is to further advance this important but also challenging research
area by soliciting the state-of-the-art retrieval methods for comparison,
especially in terms of their scalability to a bigger and more challenging
3D scene retrieval dataset.

In the rest of the paper, we first review the related work (w.r.t.
techniques and benchmarks) in Section 2. In Section 3, we introduce
the motivation, building process, contents, and evaluation metrics of
the two 3D scene retrieval benchmarks we built. A short and concise
description of each contributed method (including an additional new
method) is presented in Section 4. Section 5 describes the evaluation
results of the six (6) Query-by-Sketch and eight (8) Query-by-Image 3D
scene retrieval algorithms on the benchmarks. Section 6 concludes the
paper and lists several future research directions.

2. Related work

2.1. Scene understanding: classification, object detection, semantic segmen-
tation, and recognition

Naseer et al. (2018) conducted a survey on diverse indoor scene
understanding tasks such as scene classification and reconstruction,
semantic segmentation, object detection and pose estimation. They
also reviewed related evaluation performance metrics for the above
tasks, and proposed current challenges and open research problems that
require further investigation.

Zhou et al. (2014) proposed a new large-scale scene image dataset
which is 60 times bigger than the standard SUN (Xiao et al., 2016)
dataset. They show that deep networks learned on object-centric
datasets like ImageNet are not optimal for scene recognition, whereas
training similar networks with a large amount of scene images substan-
tially improves their performance.

Armeni et al. (2017) presented a large-scale indoor spaces dataset
that provides a variety of mutually registered modalities from 2D, 2.5D
and 3D domains, with instance-level semantic and geometric annota-
tions, enabling the development of joint and cross-modal learning mod-
els and potentially unsupervised approaches utilizing the regularities
existing in indoor spaces.

Chen et al. (2018) highlighted convolution with up-sampled fil-
ters, or ‘‘atrous convolution’’, as a powerful tool in dense prediction
tasks, proposed Atrous Spatial Pyramid Pooling (ASPP) to robustly
segment objects at multiple scales, and improved the localization of
object boundaries by combining methods from DCNNs and probabilistic
graphical models. Their DeepLab model combining the three innova-
tions sets the new state-of-art performance at the PASCAL VOC-2012

semantic image segmentation task (Everingham et al., 2012).
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2.2. Scene semantics

Semantics-based scene recognition and reconstruction. Oliva
and Torralba (2001) first put forward the term of Spatial Envelope,
defined by five features (naturalness, openness, roughness, expansion,
and ruggedness) which are estimated via energy spectrum and coarsely
localized information. Instead of relying on specific details about ob-
jects and segmentation information of regions, their computational
model uses Spatial Envelope to recognize real world scenes. Xiang et al.
(2016) built a large-scale dataset for 3D object recognition, named
ObjectNet3D, which contains both images and 3D shapes and aligns
objects in the 2D images with the 3D shapes. The dataset is therefore
useful for recognizing the 3D location, pose, and shape of objects
from 2D images, joint 2D detection and 3D object pose estimation,
and image-based 3D shape retrieval. Zeng et al. (2017) proposed a
data-driven RGB–D reconstruction model named 3DMatch which learns
a local volumetric patch descriptor for establishing correspondences
between partial 3D data. They also designed a self-supervised feature
learning method that leverages corresponding labels found in existing
RGB–D reconstructions. Mikolov et al. (2013) studied the quality of vec-
tor representations of words derived by various models on a collection
of syntactic and semantic language tasks. Focusing on the distributed
representations of words learned by neural networks, a new model
architecture namedWord2Vec was proposed for computing high-quality
word vectors from huge data sets with billions of words. It is often used
in 3D scene recognition (Chen et al., 2019) and scene parsing (Zhao
et al., 2017).

Scene Parsing. Zhou et al. (2017, 2016) introduced the ADE20K
dataset, covering a wide range of scenes and object categories with
dense and detailed annotations for scene parsing. Moreover, a generic
network design called Cascade Segmentation Module is proposed to
enable the evaluated segmentation networks to parse a scene into stuffs,
objects, and object parts in a cascade. Mohan (2014) proposed an end-
to-end deep convolutional neural network architecture that employs
multi-patch training to learn highly-hierarchical image structure and
features for scene parsing. Armeni et al. (2016) proposed a semantic
parsing method for the 3D point cloud of an indoor building using a
hierarchical approach. It first parses the raw data into semantically
meaningful spaces, and then breaks down the spaces into structural
and building elements. Huang et al. (2018) proposed Holistic Scene
Grammar (HSG) to represent the 3D scene structure based on a joint
functional and geometric distribution of indoor scenes. They also de-
vised a joint inference algorithm to estimate a holistic 3D configuration
of a RGB indoor scene image based on a set of existing CAD models
using a stochastic grammar model. Zhao et al. (2017) first presented a
new task which parses scenes with a large and open vocabulary, and
then came up with an approach to solve the task by jointly embedding
image pixels and word concepts with the help of several evaluation
metrics. Hung et al. (2017) presented a scene parsing method that
utilizes global context information based on both parametric and non-
parametric models. Their global context network is based on scene
similarities and it performs favorably compared with previous methods
that exploit only local relationship between objects.

Semantics-based 3D scene retrieval techniques. Hoàng et al.
(2010) presented an image content description of the Triangular Spatial
Relationships (𝛥-TSR) between visual entities, which improves scene
retrieval performance as well as execution time when evaluated on
several datasets of city landmarks. Fisher et al. (2011) represented
scenes as graphs that encode models and their semantic relationships,
then defined kernels between the graphs that compare common virtual
substructures and capture the similarity between corresponding scenes.
It is shown that by incorporating structural relationships they have
achieved better results in several scene modeling problems such as
finding similar scenes, relevance feedback, and 3D model retrieval.
3

2.3. 2D/3D scene benchmarks

2.3.1. Xiao et al.’s SUN and SUN3D datasets (2010, 2016)
Xiao et al. (2010) built the Scene UNderstanding (SUN) image

dataset for the purpose of fostering improvements in large scale scene
recognition. SUN was initially comprised of 899 scene categories and
130,519 images. Later, SUN was extended to include 908 distinct
classes (Xiao et al., 2016). Xiao et al. (2013) further created SUN3D, a
RGB–D video dataset with camera pose information and object labels,
to capture full-extend of 3D places. They used the videos for partial 3D
reconstruction, propagated labels from one frame to another, and then
used the labels to refine the partial reconstruction.

2.3.2. Silberman et al.’s NYU depth dataset V2 (2012)
Silberman et al. (2012) built a RGB–D indoor scene video dataset

captured by the Microsoft Kinect. It comprises 1449 densely-annotated
RGB–D images for 464 different scenes of three cities over 26 scene
classes and 407,024 unlabeled frames.

2.3.3. Patterson et al.’s SUN attribute dataset (2012, 2014)
Patterson and Hays (2012) and Patterson et al. (2014) built the

first large-scale scene attribute dataset, which contains 102 distinctive
attributes for 14,340 images belonging to 707 scene categories. They
found that scene attributes are helpful for many scene understanding
tasks including classification, zero short learning, captioning, search,
and parsing, while even the attribute features alone can achieve the
state-of-the-art performance.

2.3.4. Lin et al.’s COCO dataset (2014) and Caesar et al.’s COCO-Stuff
dataset (2018)

Lin et al. (2014) created a large-scale object detection, segmen-
tation, and captioning dataset, named Common Objects in Context
(COCO) dataset. It annotates the 80 object classes and 91 stuff classes
existing in a collection of 328K images, containing 2.5M objects in total.

Based on COCO (Lin et al., 2014), Caesar et al. (2018) further
annotated the stuff (background regions) in the images and built the
COCO-Stuff dataset, which contains annotations of 91 stuff classes
(e.g. grass, sky) based on superpixels.

2.3.5. Hua et al.’s SceneNN dataset (2016)
Hua et al. (2016) released SceneNN, a richly annotated RGB–D

indoor scene dataset which contains 100 scenes annotated at the ver-
tex, mesh and pixel level. This level of detail in annotation is in
hopes of promoting research in various computer vision and scene
understanding applications.

2.3.6. Xiang et al.’s ObjectNet3D dataset (2016)
Xiang et al. (2016) curated ObjectNet3D, a large 3D scene dataset

across 100 categories. The dataset is comprised of 90,127 scene im-
ages, 201,888 objects within the scene images and 44,147 3D objects.
ObjectNet3D aligns 2D images with 3D shapes, and provides 3D pose
annotations and approximate 3D shape annotations. ObjectNet3D’s goal
is to provide annotations at a large scale comparable to that of recent
2D datasets.

2.3.7. Handa et al.’s SceneNet network and dataset (2016)
Handa et al. (2016) designed SceneNet, a framework that auto-

matically generates much needed labeled training data for 3D scene
understanding, such as synthetic 3D scenes as well as RGB–D videos
with semantic annotations. SceneNet utilizes 57 hand created scenes
across 5 indoor scene categories and leverages existing indoor scene
annotations to find correlation and semantics between objects. Once
relationships of the objects are extracted, SceneNet samples CAD repos-
itories and constructs a new synthetic scene with annotations. Finally,
they generated around 10k synthetic views for the five types of 3D
scenes for different scene understanding experiments.



J. Yuan, H. Abdul-Rashid, B. Li et al. Computer Vision and Image Understanding 201 (2020) 103070
2.3.8. Song et al.’s SUNCG dataset (2017)
Song et al. (2017) constructed Scene UNderstanding Computer

Graphics (SUNCG), a dataset of synthetic 3D scenes with manually
labeled voxel occupancy and semantic labels. SUNCG has 45,622 differ-
ent scenes and 2644 objects across 84 categories. They also developed
the Semantic Scene Completion Network (SSCNet), an end-to-end 3D
convolutional neural network, which uses a single depth image as input
and produces semantic labels as well as a voxel occupancy grid. They
trained SSCNet with SUNCG, and achieved state-of-the-art performance
in both scene completion and semantic labeling.

2.3.9. Zhou et al.’s places dataset (2018)
Zhou et al. (2018) compiled Places, a dataset of 10,624,928 scene

images across 434 scene categories. While Places is not annotated at
the object level, it provides the most diverse scene composition as well
as insights into solutions to scene understanding problems.

2.3.10. Zou et al.’s SketchyScene dataset (2018)
Zou et al. (2018) curated SketchyScene, a dataset with 29,000

scene-sketches, over 7000 pairs of scene templates and photos, and
over 11,000 object sketches. Each scene is comprised of object-based
semantic ground truth and instance mask. They also provided insights
into the use of SketchyScene to explore potential methods trained to
perform semantic segmentation as well as image retrieval, captioning
and sketch coloring.

2.3.11. Gao et al.’s SketchyCOCO dataset (2020)
Gao et al. (2020) proposed to generate a full-scene image from

a hand-drawn scene sketch. To evaluate their approach, they built
SketchyCOCO which contains 14K+ pairs of scene images and sketches
based on the COCO-Stuff dataset (Caesar et al., 2018). Their two-staged
approach generates the foreground and background of an image sepa-
rately. Therefore, SktechCOCO also includes 20K+ sets of foreground
sketches, images and their edge maps, which span 14 classes; as well as
27K+ pairs of background sketches and images falling into 3 categories.

3. Benchmarks

In the SHREC’18 and SHREC’19 scene retrieval tracks (Yuan et al.,
2018; Abdul-Rashid et al., 2018; Yuan et al., 2019c; Abdul-Rashid
et al., 2019), we have built two sketch/image-based 3D scene retrieval
benchmarks, featuring a basic and an extended benchmark, respec-
tively. To make our presentation self-contained, we also define seven
commonly-used performance evaluation metrics to evaluate retrieval
algorithms.

3.1. Basic benchmark: SHREC’18 sketch/image-based 3D scene retrieval
track benchmark 𝐒𝐜𝐞𝐧𝐞_𝐒𝐁𝐑_𝐈𝐁𝐑_𝟐𝟎𝟏𝟖

3.1.1. Overview
Our basic 2D Scene Sketch/Image-Based 3D scene Retrieval bench-

mark Scene_SBR_IBR_2018 is publicly available (Yuan et al., 2019d;
Abdul-Rashid et al., 2019a). It utilizes: (1) the 250 2D scene sketches
in Scene250 (Ye et al., 2016) as its 2D scene sketch query dataset; (2)
10,000 2D scene images selected from ImageNet (Deng et al., 2009) as
its 2D scene image query dataset; (3) 1000 SketchUp 3D scene models
(‘‘.OBJ’’ and ‘‘.SKP’’ format) as its 3D scene target dataset. All of the
above three datasets have the same ten classes, and each of them
contains the same number of 2D scene images (1000 per class), 2D
scene images (25 per class), and 3D scene models (100 per class).

To facilitate learning-based retrieval, we randomly select 18
sketches, 700 images, and 70 models from each class for training
and use the remaining 7 sketches, 300 images, and 30 models for
testing, as indicated in Table 1. The SHREC’18 scene sketch/image
track participants are required to submit results on the testing dataset

if they use a learning-based approach. Otherwise, the retrieval results

4

Table 1
Training and testing dataset information of our Scene_SBR_IBR_2018 benchmark.

Datasets Sketches Images Models

Training (per class) 18 700 70
Testing (per class) 7 300 30
Total (per class) 25 1000 100
Total (all 10 classes) 250 10,000 1000

Fig. 1. 2D scene sketch query examples (one example per class) (Ye et al., 2016) in
our Scene_SBR_IBR_2018 benchmark.

on the complete (250 sketches/10,000 images, and 1000 models)
dataset are needed. To provide a complete reference for future users
of our Scene_SBR_IBR_2018 benchmark, we evaluate the participating
algorithms on both the testing dataset (7 sketches/300 images, and
30 models per query) for learning-based approaches and the complete
Scene_SBR_IBR_2018 benchmark (25 sketches/1000 images and 100
models per class) for non-learning based approaches.

3.1.2. 2D scene sketch query dataset
To facilitate Query-by-Sketch 3D scene retrieval, we built the 2D

scene sketch query dataset comprising 250 2D scene sketches (10
classes, each with 25 sketches), while all the classes have relevant
models in the 3D scene target dataset which are downloaded from 3D
Warehouse (Trimble, 2018). One example per class is demonstrated in
Fig. 1.

3.1.3. 2D scene image query dataset
Similarly, to facilitate Query-by-Image 3D scene retrieval, we cre-

ated the 2D scene image query dataset which is composed of 10,000
scene images (10 classes, each with 1000 images) that are all from
ImageNet (Deng et al., 2009). One example per class is demonstrated
in Fig. 2.

3.1.4. 3D scene model target dataset
The 3D scene target dataset is built on the selected 1000 3D scene

models downloaded from 3D Warehouse. Each class has 100 3D scene
models. One example per class is shown in Fig. 3.

3.2. Extended benchmark: SHREC’19 sketch/image -based 3D scene re-
trieval track benchmark 𝐒𝐜𝐞𝐧𝐞_𝐒𝐁𝐑_𝐈𝐁𝐑_𝟐𝟎𝟏𝟗

3.2.1. Overview
To further promote the research of 3D scene retrieval, in 2019 we

built a unified 3D scene benchmark supporting both sketch and image
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Fig. 2. 2D scene image query examples (one example per class) in our
cene_SBR_IBR_2018 benchmark.

Fig. 3. 3D scene model target examples (one example per class) in our
cene_SBR_IBR_2018 benchmark.

ueries by substantially extending Scene_SBR_IBR_2018 by means of
dentifying and consolidating the same number of sketches/images/
odels for another additional 20 classes from the most popular 2D/3D
ata resources. This work is the first to form a new and larger bench-
ark corpus for both sketch-based and image-based 3D scene retrieval.
his benchmark provides an important resource for the community of
D scene retrieval and will likely foster the development of practical
ketch-based and image-based 3D scene retrieval applications.

.2.2. Motivation
As mentioned in Section 3.1, to foster the research direction of

ketch-based and image-based 3D scene retrieval, we built the first
enchmark Scene_SBR_IBR_2018 respectively and organized two re-
ated Shape Retrieval Contest (SHREC) tracks (Yuan et al., 2018; Abdul-
ashid et al., 2018). During the competitions, we found that both of

hese two benchmarks were not challenging and comprehensive enough
ince they cover only 10 distinctive categories. Considering this, we de-
ided to further increase the comprehensiveness of the benchmarks by
uilding a significantly larger and unified benchmark which supports
oth types of retrieval.
5

able 2
raining and testing dataset information of our Scene_SBR_IBR_2019 benchmark.
Datasets Sketches Images Models

Training (per class) 18 700 70
Testing (per class) 7 300 30
Total (per class) 25 1000 100
Total (all 30 classes) 750 30,000 3000

3.2.3. Building process
By referring to several of the most popular 2D/3D scene datasets,

such as Places (Zhou et al., 2018) and SUN (Xiao et al., 2010), we
finally selected 30 scene classes (including the initial 10 classes in
Scene_SBR_IBR_2018) based on the criteria of popularity, in terms of
the degree to which they are commonly seen. Based on a voting mech-
anism among three people (two graduate student voters and a faculty
moderator), the most popular 30 scene classes were selected from the
88 common scene labels in the Places88 dataset (Zhou et al., 2018).
It is worth noting that the 88 scene categories are already shared by
ImageNet (Deng et al., 2009), SUN (Xiao et al., 2016), and Places (Zhou
et al., 2018). For the additional 20 classes’ (sketches, images and
models) data collection, we gathered their sketches and images from
Flickr (2018) as well as Google Images (Google, 2018), and downloaded
their SketchUp 3D scene models (in both the original ‘‘.SKP’’ format and
our transformed ‘‘.OBJ’’ format) from 3D Warehouse (Trimble, 2018).

All of the above mentioned datasets (Places, SUN, ImageNet, Flickr,
Google Images, and 3D Warehouse) are among the most popular
sketch/image/model online repositories, whose data come from prac-
tical scenarios (i.e., captured by consumer cameras) or created by
professionals who build 3D models for practical applications (i.e., peo-
ple upload and share 3D models via 3D Warehouse). These design
considerations are to make our datasets generalize to real applications.

3.2.4. Benchmark details
Our extended 3D scene retrieval benchmark Scene_SBR_IBR_2019

is publicly available (Yuan et al., 2019a; Abdul-Rashid et al., 2019b).
It expands the initial 10 classes of Scene_SBR_IBR_2018 by adding 20
new classes to form a more comprehensive dataset of 30 classes. 500
more 2D scene sketches and 20,000 more images have been added to
its 2D scene sketch and image query datasets respectively, and 2000
more SketchUp 3D scene models (‘‘.SKP’’ and ‘‘.OBJ’’ formats) to its 3D
scene dataset. Each of the additional 20 classes has the same number of
2D scene sketches (25), 2D scene images (1000), and 3D scene models
(100), as well. Therefore, Scene_SBR_IBR_2019 contains a complete
dataset of 750 2D scene sketches (25 per class), 30,000 2D scene images
(1000 per class), and 3000 3D scene models (100 per class) across 30
scene categories. Examples for each class are demonstrated in Figs. 4,
5, and 6.

Similar to the Scene_SBR_IBR_2018, we randomly select 18
sketches, 700 images, and 70 models from each class for training and
the remaining 7 sketches, 300 images, and 30 models are used for
testing, as shown in Table 2. The participants are asked to submit
results on the training and testing datasets, respectively, if they use a
learning-based approach. Otherwise, the retrieval results based on the
complete (750 sketch queries or 30,000 image queries, and 3000 scene
model targets) dataset are needed.

3.3. Evaluation metrics

To conduct a solid evaluation of the sketch/image-based 3D scene
retrieval algorithms based on our two scene retrieval benchmarks, we
adopt seven performance evaluation metrics that are commonly used
in information retrieval: Precision–Recall plot (PR), Nearest Neighbor
(NN), First Tier (FT), Second Tier (ST), E-Measures (E), Discounted
Cumulated Gain (DCG) (Shilane et al., 2004) and Average Precision

(AP) (Li and Johan, 2013). For users’ convenience, we also have
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Fig. 4. 2D scene sketch query examples in our Scene_SBR_IBR_2019 benchmark. One
example per class is shown.

Fig. 5. 2D scene image query examples in our Scene_SBR_IBR_2019 benchmark. One
example per class is shown.

developed an evaluation toolkit to compute them for each of the two
benchmarks, and made them publicly available via the corresponding
6

Fig. 6. 3D scene model target examples in our Scene_SBR_IBR_2019 benchmark. One
example per class is shown.

four tracks (Yuan et al., 2019d; Abdul-Rashid et al., 2019a; Yuan et al.,
2019a; Abdul-Rashid et al., 2019b). For convenience and completeness,
we explain the meaning and definition for each of the seven metrics
below.

Here, we look at how to calculate the performance metrics for
a sketch/image query 𝑞. We need to average over all the queries’
performance to generate the performance of a 3D scene retrieval al-
gorithm. Let us assume that in the 3D scene model target dataset of the
benchmark, there are 𝑛 models in total, where 𝐶 models are relevant,
that is, they have the same categorical label as the query 𝑞.

• Precision–Recall plot (PR): This curve plot (Recall is the hor-
izontal axis, while Precision is the vertical one) measures the
overall retrieval performance, thus it is one of the most important
metrics to compare the general performance of different retrieval
algorithms. Each point on the curve corresponds to a rank list
𝑅𝐾 , while 1≤ 𝐾 ≤ 𝑛. The precision 𝑃 value of the point is to
measure the hitting accuracy of the retrieval list. For example,
if there are 𝐻 relevant models (hits) in the rank list, then the
precision 𝑃 = 𝐻

𝐾 . While, the recall 𝑅 value of that point is to find
out how much percentage of the relevant models in the whole
dataset have been retrieved so far in that top 𝐾 rank list, that is,
𝑅 = 𝐻

𝐶 .
• Nearest Neighbor (NN): NN measures the precision (hitting

accuracy) of the top 1 rank list.
• First Tier (FT): FT is the recall of the top 𝐶 rank list.
• Second Tier (ST): ST is the recall of the top 2𝐶 rank list.
• E-Measure (E): Considering the importance of the first page of

results, we use E-Measure to measure the overall performance of
the top 32 returned models that can fit in that page: 𝐸 = 2

1
𝑃 + 1

𝑅
.

• Discounted Cumulated Gain (DCG): Relevant models appear in
different locations have different weights, thus DCG is created
to measure the overall performance by accumulating the con-
tributions of all the relevant models weighted by their ranking
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positions. We first create a label vector 𝐺, where 𝐺𝑖=1 for a
relevant model and 𝐺𝑖=0 for a irrelevant model. Then, DCG is
defined as follows based on a logarithmic decay weighting factor,

𝐷𝐶𝐺𝑖 =

{

𝐺1 𝑖 = 1
𝐷𝐶𝐺𝑖−1 +

𝐺𝑖
lg2 𝑖

otherwise
(1)

Finally, we normalize it by its optimum,

𝐷𝐶𝐺 =
𝐷𝐶𝐺𝑛

1 +
∑𝐶

𝑗=2
1

lg2 𝑗

(2)

• Average Precision (AP): AP measures the overall performance
as well since it combines both precision and recall. It averages all
the precision values along the Precision–Recall plot. Therefore, it
is equal to the total area under the Precision–Recall curve plot.

4. Methods

The first five authors of this paper built the above two benchmarks
and organized the four SHREC’18/SHREC’19 tracks on the topics of
sketch-based and image-based 3D scene model retrieval as well as
this follow-up study. In total, the four tracks’ participants contributed
twelve (12) runs of five (5) different Query-by-Sketch and eighteen
(18) runs of seven (7) distinctive Query-by-Image 3D scene retrieval
algorithms. In addition, one run for each of the four tracks based
on a newly introduced additional method named DRF (Section 4.1.6)
has been incorporated in this paper; while one and two new runs
of the TCL method (Section 4.1.2) are also provided here for the
first time on the SHREC’19 sketch and image track respectively to
evaluate its scalability performance. In this section, we introduce each
Query-by-Sketch and Query-by-Image participating method in detail.
However, except BoW (Section 4.2.1), other six Query-by-Image algo-
rithms (i.e., VGG (Section 4.1.1), MMD-VGG (Section 4.1.1), TCL (Sec-
ion 4.1.2), VMV-VGG (Section 4.1.5), RNIRAP (Sections 4.1.3∼4.1.4),
nd DRF (Section 4.1.6)) are almost identical to their counterparts in
he Query-by-Sketch category (RNSRAP for RNIRAP). Therefore, we
erge their presentations only in Section 4.1 when we present the
uery-by-Sketch methods. We also need to mention that each method
as some parameter settings, which can be found in each method’s
escription below.

To provide an even better overview of the fourteen (14) evaluated
D model retrieval algorithms, we classify them in Table 3 based on
he following taxonomy: type of feature (e.g., local or global), feature
oding/matching methods (e.g., Direct Feature Matching (DFM), Bag-
f-Words (BoW) or Bag-of-Features (BoF) framework, or Classification-
ased Retrieval (CBR) framework), learning scheme (e.g., Domain
daption (DA), Convolutional Neural Network (CNN), or Variational
utoencoder (VAE)), CNN model used for learning-based approaches,
nd semantic information (e.g., usage of classification or label informa-
ion).

.1. Query-by-sketch retrieval

.1.1. MMD-VGG: Maximum mean discrepancy domain adaption on the
GG-Net, by W. Li, S. Xiang, H. Zhou, W. Nie, A. Liu, and Y. Su

Overview. They proposed the Maximum Mean Discrepancy domain
daption based on the VGG model (MMD-VGG) to address the scene
ketch/image-based 3D scene retrieval problem, where the query is a
D scene sketch/image and the targets are 3D scene models. Those
wo types of data come from different datasets with diverse data
istribution. They address this task from two settings, learning-based
etting and non-learning based setting. This method mainly contains
wo successive steps: data preprocessing and feature representation.

Data preprocessing. For 3D scene data, they use SketchUp, which

s a very popular and easy-to-use 3D design software, to capture the

7

Fig. 7. Several example representative views.

representative views of all the 3D models automatically. The format of
the input model is ‘‘.SKP’’ and the output of the model in SketchUp is
a 480 ∗ 480 image. Several example representative views are shown in
ig. 7.

Feature representation. After obtaining the representative views
f all the 3D models, the 2D-to-3D retrieval task can be transformed
nto a 2D-to-2D retrieval task. For the feature representation, they use
wo settings: learning-based setting and non-learning based setting.

Learning-based setting. Inspired by the impressive performance
f deep networks, they employ the VGG (Simonyan and Zisserman,
014) model pretrained on the Places (Zhou et al., 2018) dataset as the
nitial network parameters. Then, they fine-tune the network on all the
raining sketches/images and all the representative views of training
D models. Finally, they use the output of last but one fully connected
ayer (fc7) as the feature representation of each image.

It is obvious that the domain divergence between the targets and
he query is quite huge. A scene sketch/image dataset and a 3D scene
ataset can own different visual features even though when they de-
ict the same category, which makes it difficult for cross-domain 3D
odel retrieval. Since the fine-tuning operation can only moderately

educe the divergence between these two datasets, they apply a domain
daption method to help to solve the cross-domain problem. In this
lgorithm, they aim to find a unified transformation which learns a
ew common space for features from two different domains. In detail,
he nonparametric Maximum Mean Discrepancy (Long et al., 2013) is
everaged to measure the difference in both marginal and conditional
istributions. Then, they unify it by Principal Component Analysis
PCA) to construct a feature representation which is robust and efficient
or the domain shift reduction. After the domain adaptation, the fea-
ures of two domains are projected into a common space. They measure
he similarity between the query and target directly by computing their
uclidean distance.

Non-learning based setting. For non-learning based setting, they
irectly use the VGG (Simonyan and Zisserman, 2014) model pre-
rained on the Places dataset to extract the features of sketches/images/
iews. Then, they directly compute the Euclidean distances between the
cene sketches/images and the representative views of the 3D scene
odels to measure their similarities.

.1.2. TCL: Triplet center loss, by X. Liu, X. He, Z. Zhou, Y. Zhou, S. Bai
and X. Bai

Their method is based on a two-stream CNN which processes sam-
les from either domain with a corresponding CNN stream. Based
n triplet center loss (He et al., 2018) and softmax loss supervision,
he network is trained to learn a unified feature embedding for each
ample, which is then used for similarity measurement in the following
etrieval procedure. Below is the detailed description of the method.

View rendering. Their approach exploits the view-based repre-
entations of 3D scene models. For each 3D scene model (with color
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Table 3
Classification of the fourteen evaluated methods. Terms involved in the evaluated methods: (1) MMD: Maximum Mean Discrepancy; (2) TCL: Triplet Center Loss; (3) RNSRAP:
ResNet50/ResNet18 based Sketch Recognition and Adapting Place classification; (4) VMV: View and Majority Vote; (5) BoW: Bag-of-Words; (6) RNIRAP: ResNet50/ResNet18 based
Image Recognition and Adapting Place classification; (7) CVAE: Conditional Variational AutoEncoders; (8) DRF: Deep Random Field. When classifying Query-by-Sketch/Image
methods, we refer to Li et al. (2014a) for ‘‘Feature type’’: local or global 2D feature. Two different retrieval frameworks: (1) DFM: Direct Feature Matching; (2) CBR: Classification-
Based 3D model Retrieval framework. Learning schemes: (1) DA: Domain Adaption; (2) CNN: Convolutional Neural Network; (3) VAE: Variational Autoencoder. CNN model(s)
used if it adopts a CNN-based learning scheme. ‘‘–’’ means not applicable.

Index Evaluated Feature Feature Learning CNN Semantic Section Reference(s)
method type coding/matching scheme model information

Query-by-Sketch

1 VGG Local DFM No VGG No 4.1.1 Simonyan and Zisserman (2014)
2 MMD-VGG Local DFM DA VGG No 4.1.1 Long et al. (2013) and Simonyan and Zisserman (2014)
3 TCL Local DFM CNN VGG, ResNet No 4.1.2 He et al. (2018)
4 RNSRAP Local CBR CNN ResNet Yes 4.1.3, 4.1.4 Zhou et al. (2018), Tzeng et al. (2017) and Ren et al. (2015)
5 VMV-AlexNet Local CBR CNN AlexNet No 4.1.5 Yuan et al. (2019b)
6 VMV-VGG Local CBR CNN VGG No 4.1.5 Yuan et al. (2019b)
7 DRF Local CBR CNN VGG Yes 4.1.6 Yuan et al. (2020)

Query-by-Image

8 VGG Local DFM No VGG No 4.1.1 Simonyan and Zisserman (2014)
9 MMD-VGG Local DFM DA VGG 4.1.1 Long et al. (2013) and Simonyan and Zisserman (2014)
10 TCL Local DFM CNN VGG, ResNet No 4.1.2 He et al. (2018)
11 VMV-VGG Local CBR CNN VGG No 4.1.5 Yuan et al. (2019b)
12 BoW Local BoW No – No 4.2.1 Nguyen et al. (2015) and Limberger et al. (2017)
13 RNIRAP Local CBR CNN ResNet No 4.1.3, 4.1.4 Zhou et al. (2018), Tzeng et al. (2017) and Ren et al. (2015)
14 CVAE Local DFM VAE – No 4.2.2 Kingma et al. (2014)
15 CVAE-VGG Local DFM VAE VGG No 4.2.2 Kingma et al. (2014)
16 DRF Local CBR CNN VGG Yes 4.1.6 Yuan et al. (2020)
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Fig. 8. Illustration of the network architecture. Two separate CNN streams are used to
xtract features for the two domains. Triplet center loss along with softmax loss (not
epicted here) is used to optimize the whole network.

exture), they render it into multiple color images from 𝑁𝑣 (𝑁𝑣 =
12 in their experiments) view directions. Each view image is of size
256 × 256. To fit the pre-defined CNNs during training, images of size
224 × 224 are randomly cropped as input from these rendered view
images. While for testing, they only take the center crop of the same
size from each view image.

Network architectures. An overview of the feature learning net-
work is depicted in Fig. 8. Considering the huge semantic gap between
images and 3D scene models, they adopt two separate CNN streams for
samples from the two different domains. A normal CNN (Stream 1) is
used to extract the features of sketches/images, while the MVCNN (Su
et al., 2015) framework (Stream 2) is adopted to obtain features from
the rendered view images. In their experiments, these two streams are
based on the same backbone (e.g. VGG11-bn Simonyan and Zisserman,
2014). But note that their parameters are not shared. The last fully
connected layer of each stream outputs a 𝑁𝑐 -dimension embedding
vector, where 𝑁𝑐 is the number of categories.

Triplet Center Loss. In order to increase the discrimination of the
features, they adopt triplet center loss (TCL) (He et al., 2018) for feature
learning. Given a batch of training data with 𝑀 samples, they define
TCL as,

𝐿𝑡𝑐 =
𝑀
∑

𝑖=1
max

(

𝐷
(

𝑓𝑖, 𝑐𝑦𝑖
)

+ 𝑚 − min
𝑗∈𝐶∖{𝑦𝑖}

𝐷
(

𝑓𝑖, 𝑐𝑗
)

, 0
)

(3)

here 𝐷(⋅) represents the squared Euclidean distance function. 𝑦𝑖 and 𝑓𝑖
re the ground-truth label and the embedding for sample 𝑖 respectively.

is the label set. 𝑐𝑦𝑖 (or 𝑐𝑗) is the center of embedding vectors for
lass 𝑐𝑦𝑖 (or 𝑗). Intuitively, TCL is to enforce the distances between
he samples and their corresponding center 𝑐 (called positive center)
𝑦𝑖 e

8

maller than the distances between the samples and their nearest
egative center (i.e. centers of other classes 𝐶∖{𝑦𝑖}) by a margin 𝑚. For
better performance, softmax loss is also employed.

Retrieval. In the testing stage, the two CNN streams are employed
o extract the feature embeddings of both the 2D scene sketches/images
nd the 3D scene models, respectively. Euclidean distance is adopted
s the distance metric to calculate the similarity matrix between the
ketches/images and 3D scene models. To further improve the retrieval
erformance, an efficient re-ranking algorithm utilized in GIFT (Bai
t al., 2016) is taken as a post-processing step. Three runs with dif-
erent experimental settings are provided, they are, Run1 with a single
GG11-bn model as the backbone network, Run2 and Run3 which are

he ensemble results computed using different backbone models includ-
ng VGG11-bn (Simonyan and Zisserman, 2014), ResNet50 (He et al.,
016) and ResNet101 (He et al., 2016) and different re-ranking param-
ter settings. Originally, only the results on the two SHREC’18 tracks
re available. To evaluate TCL’s scalability with respect to a larger
ataset, the track organizers have implemented the TCL1’s running on
oth SHREC’19 tracks as well as the TCL2’s running on the SHREC’19
mage track, with the help from this paper’s co-author Tianyang Wang,
irst author Juefei Yuan, and the TCL method’s authors. Therefore, we
ame it as a new group ‘‘Wang & Yuan & Liu’’, in short ‘‘WYL’’. Due to
he unavailability of related code and limited time, the aforementioned
e-ranking step is not included in the running.

.1.3. RNSRAP/RNIRAP (SHREC’18 basic version): ResNet50/ResNet18
ased sketch/image recognition and adapting place classification for 3D
odels using adversarial training, by M. Tran, T. Le, V. Ninh, K. Nguyen,
. Bui, V. Ton-That, T. Do, V. Nguyen, M. Do, and A. Duong

Except for the first step, the two methods RNSRAP and RNIRAP
hare other steps. Therefore, we only present their first steps separately.

Sketch recognition with ResNet50 encoding. In sketch classifi-
ation task, the output of ResNet50 (He et al., 2016) is employed to
ncode a sketch into a feature vector of 2048 elements. Due to the
xtremely small-scale data in sketch data, it is difficult to use only the
xtracted features to train their neural network model directly, so they
reate variant samples by data augmentation. From the original train-
ng dataset, different variations of a sketch image can be generated.
egular transformations can be applied, including flipping, rotation,

ranslation, and cropping. From the saliency map of an image, they
xtract different patches with their natural boundaries corresponding
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Fig. 9. 2D scene classification with scene attributes.

o different entities in the image and synthesize other sketch images
y matting these patches. By this way, they enrich the training dataset
ith 2000 images.

Two types of fully connected neural networks are constructed.
he first network type (Type 1) contains two hidden layers to train
xtracted feature vectors. The number of nodes in the first and second
idden layers are 256 and 128, respectively. The second network type
Type 2) uses only one hidden layer with 200 nodes. Extracted features
rom ResNet50 of all training sketch images, including the original
nd synthesized extra samples, are used to train different classification
odels conforming the two proposed neural network structures.

Owing to the small-scale training data, Batch Gradient Descent
ith Adam optimizer (Kingma and Ba, 2014) is used to minimize the

ross entropy loss function in the training process. The output scores
re processed through softmax function to provide proper predicted
robability for each class.

They improve the performance and accuracy of their system by
raining multiple classification networks with different initializations
or random variables for the two types of neural networks. They fuse
he results of those models by using the majority-vote scheme to
etermine the label of a sketch image query.

They also improve the performance and accuracy of the retrieval
ystem by training multiple classification networks with different num-
ers of nodes 𝐾 in the hidden layer and different initializations for
andom variables. Finally, they obtain five classification models with
he same structure and fuse the results of those models with the voting
cheme to determine the label of a 2D scene image query.

An ASUS-Notebook SKU X541UV computer with Intel(R) Core(TM)
5-6198DU CPU @ 2.30 GHz, 8 GB Memory, and 1 x NVIDIA GeForce
20MX was used. The training time for a classification model is about
0 min. It takes less than 1 s to predict the category of a sketch image.

Scene image classification with ResNet18 encoding. A 2D scene
image can be classified into one of the ten categories by using the
scene attributes of that image, such as open area, indoor lighting,
natural light, wood, etc. Thus, they employ the output of Places365-
CNNs (Zhou et al., 2018) as the input feature vector for their neural
network. They choose the ResNet18 model in the core of Place365
network and extract the scores of its scene attributes which yield a
vector of 102 elements. By feeding the model with 7000 training 2D
scene images, they obtain a training data with a dimension of 7000×102
used as the input vector for the 2D scene classification task.

The classification model is a fully connected neural network having
one hidden layer with 𝐾 nodes, 100 ≤ 𝐾 ≤ 200 (see Fig. 9). A training
algorithm called Batch Gradient Descent with Adam optimizer (Kingma
and Ba, 2014) is used to minimize the cross entropy loss function
in training process. The output scores are processed through softmax
function to provide the predicted probability for each class. It should
be noticed that some query images may be classified into more than
one categories. For example, some images contain a river but also has a
mountain in the background. Thus, they assign up to two best predicted
classes to each 2D scene image query.

To improve the performance and accuracy of the retrieval system,
they train multiple classification networks with different numbers of
nodes 𝐾 in the hidden layer and different initializations for random
9

variables. Finally, they obtain five classification models with the same
structure and fuse the results of those models with the voting scheme
to determine the label of a 2D scene image query. Using the same
computer, it takes about one hour to train each classification model.

Saliency-based selection of 2D screenshots. For a 3D model,
there exist multiple viewpoints to capture screenshots, some capture
the general views of the model while others focus on a specific set
of entities in the scene. They randomly generate multiple screenshots
from different viewpoints at 3 different scales: general views, views
on a set of entities, and views on a specific entity. Screenshots with
many occlusions are removed. Then, they estimate the saliency map of
a screenshot with DHSNet (Liu and Han, 2016) to evaluate if this view
has sufficient human-oriented visually attracted details. By this way,
they generate a set of visually information-rich screenshots for each
3D model. In this task, experimental results show that using no more
than 5 appropriate views can be sufficient to classify the place of a 3D
model with high accuracy.

Place classification adaptation for 3D models. Adversarial train-
ing is a promising approach for training robust deep neural network.
Adversarial approaches are also possible to unsupervised domain adap-
tation (Tzeng et al., 2017; Sohn et al., 2017). They apply the adversarial
adaptive method to minimize the distance between the source and
target mapping distributions. This approach aims to create an efficient
target mapping model due to substantial variance between the two
domains.

In this approach, the source domain is a set of natural images that
are used to train Places365-CNN models, while the target domain is
a set of 3D place screenshots that are captured from given 3D models.
Inspired by the idea of adversarial discriminative domain adaptation for
face recognition (Tzeng et al., 2017), they propose their method to train
the target mapping model so as to match the source distribution for
place classification. Fig. 10 illustrates the overview of their proposed
method to adapt a place classification system from natural images to
screenshots of 3D models. They first train a target representation 𝑀𝑡
to encode a screenshot of a 3D model into a feature vector that cannot
be distinguished with the feature from a natural image by the domain
discriminator. Then they train a classifier 𝐶 that can correctly classify
target images.

In the Adversarial Adaptation step, a natural image is encoded by
source representation 𝑀𝑠 and a screenshot of a 3D model is encoded

by a target representation 𝑀𝑡. The goal of this step is to learn 𝑀𝑡 so
hat the discriminator cannot distinguish the domain of a feature vector
ncoded by either 𝑀𝑠 or 𝑀𝑡. They keep the source representation 𝑀𝑠
ixed and train the target representation 𝑀𝑡 using a basic adversarial
oss until the feature maps of the two domains are indistinguishable by
he discriminator. By this way, they obtain a transformation to match
he target distribution (screenshots from 3D models) with the source
istribution (natural images).

In the Classification for Target Domain step, they use 𝑀𝑡 to
encode screenshots of 3D models and train a classifier with data from
the training dataset. The label for a 3D model is determined by voting
from the results of its selected screenshots with the coefficient weights
corresponding to the prediction score of each view. To further boost the
overall accuracy for place classification of 3D models from 2D screen-
shots, they train multiple classifiers with the same network structure
and assemble the output results with voting scheme. They use Google
cloud machines n1-highmem-2, each with 2 vCPUs, Intel(R) Xeon(R)
CPU @ 2.50 GHz Intel Xeon E5 v2, 13 GB Memory, and 1 x NVIDIA
Tesla K80.

Ranking generation. Because of the wide variation of sketch im-
ages, for each sketch image in the test set, they consider up to the two
best labels of the sketch image, then retrieve all related 3D models (via
their common labels), and finally sort all retrieved items (3D models)

in ascending order of dissimilarity.
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Fig. 10. Place classification for screenshots of 3D models with adversarial discriminative domain adaptation.
• Single-labeled sketch image: they select all the 3D models corre-
sponding to the label of a sketch image and insert them into the
rank list in a descending order of confidence scores measuring the
possibility that a 3D model belongs to that category.

• Multi-labeled sketch image: the similarity score between a sketch
image and a 3D model is determined by the product of the
confidence score of the sketch image and that of the 3D model. All
3D models in the categories related to a sketch image are inserted
into the rank list and sorted in descending order of similarity,
i.e. ascending order of distance.

They submit 3 runs to the SHREC’18 sketch/image track.

• Run 1: they use the single label of a sketch/image from one
network in Type 1 and the single label of a 3D model from one
place classification model.

• Run 2: they use the single label of a sketch/image from the fusion
of 3 networks (one Type 1 and two Type 2 networks) and the
single label of a 3D model from the fusion of 5 place classification
models.

• Run 3: they use the two best labels of a sketch/image from one
network in Type 1 and the single label of a 3D model from the
fusion of 5 place classification models.

4.1.4. RNSRAP/RNIRAP (SHREC’19 extended version): ResNet50-based
sketch/image recognition with scene attributes and adapting place classifica-
tion for 3D models using adversarial training, by N. Bui, T. Do, K. Nguyen,
T. Nguyen, V. Nguyen, and M. Tran

Similarly, the two methods RNSRAP’19 and RNIRAP’19 share all the
steps, except the first one. Therefore, we only present their first steps
respectively.

Sketch image classification with data augmentation. They use
data augmentation to enrich the training data for sketch recognition.
They first collect a dataset of natural scene images from Google. They
do not only crawl images with exactly 30 concepts in this track but
also extend the list of concepts with semantically related concepts. For
example, instead of searching only ‘‘desert’’ images, they expand the
query terms into ‘‘desert’’, ‘‘camel’’, ‘‘cactus’’, etc. By using this query
expansion strategy, they expect that their natural scene corpus can be
used to link the gap of visual differences in the sketch image dataset.

The natural scene images are transformed into sketch-like images.
For this track, they simply use automated tools for image transforma-
tion. However, they intend to use image translation to adapt images
from the natural domain into the sketch-like domain.

For each image in the enriched dataset, they use ResNet-50 (He
et al., 2016) to extract features and train a simple image classification
network with 30 concepts.

2D scene image classification with scenes’ deep features. To
classify an image into one of the 30 scene categories in this track, they
apply their method (used in SceneIBR2018, Section 4.1.3) to extract
scenes’ deep features using MIT Places API (Zhou et al., 2018). They
10
Fig. 11. 2D scene classification with scenes’ deep features.

train a simple network with the extracted features from Places API and
use this network to classify an input image with 30 labels.

In their first step, an input image is represented as a feature vector
in Places API domain vector space using a pre-trained ResNet-50 (He
et al., 2016) model on the MIT Places API scene recognition network.
Instead of using 102 scene attributes as in their previous SceneIBR2018
competition, they use a 512-dimensional deep feature representation
which is generated before being processed through dense layers for
classification.

Next, they utilize the extracted features to train a neural network
classifier on the provided 30 scene categories. Different from their
method used in the SceneIBR2018 track, the input feature is processed
through two dense hidden layers with a dimension of 1024 for each
layer, instead of a small network of 100 ≤ 𝐾 ≤ 200 dimensions as
stated in their previous method. The visualization of their network
configuration is demonstrated in Fig. 11. The network is trained on
a server with 1 × NVIDIA Tesla K80 GPU. An Adam optimizer with
learning rate at 0.0001 being hyperparameters. Three models were
trained using this network configuration. The final label prediction of
an image is outputted by using a majority voting scheme from these
three models.

3D scene classification with multiple screenshots, domain
adaptation, and concept augmentation. They perform a two-step
process for 3D scene classification with multiple screenshots. The first
step of their method is to use a number of classification models and
domain adaptation to classify the 3D scene. The second step is to take
advantage of visual concepts to refine the final result. The overview of
the method is illustrated in Fig. 12.

In the first step, they train multiple classification models and use
the voting scheme to ensemble the classification results. Because there
are fair resemblances between 3D scene models and scenery images,
they perform transfer learning from models pretrained on two datasets:
ImageNet (Deng et al., 2009) and Places365 (Zhou et al., 2018).

The first model is to extract feature vectors for each image us-
ing ResNet-50 (He et al., 2016) pretrained on the ImageNet and
Places365 datasets, respectively, then feed these feature vectors to a
fully-connected neural network that has one to two hidden layers. The
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Fig. 12. Two-step process of the 3D scene classification method.

umber of nodes in each hidden layers is set to 128, 192, 256, or
20 nodes and they choose the architecture that yields the highest
lassification accuracy to be the final result of this model.

They also extract 365-D scene attribute features for each image
sing Places365 and then concatenate them with the 2048-D feature
ector of that image to form a 2413-D feature, which is later re-
uced to 512-D by PCA to train a third classification network. The
xtracted scene attributes may provide useful information, such as
‘outdoor’’, ‘‘natural light’’ , ‘‘trees’’ for a screenshot from a model in
he ‘‘mountain’’ category. Concatenating two vectors’ results in a higher
imensional input may make the model prone to overfitting. Therefore,
ach feature is normalized to have zero mean and unit variance and
hen they use PCA to reduce the size of the input vectors to 512-D.

Their second model is to collect real images of the 30 different cate-
ories from Places365 dataset and the Internet (for the ‘‘great_pyramid’’
lass). They collect 1000 images per category. Then they use the
eights of the last fully connected layer trained by this small-scale
ataset to initialize the weights of the model when trained on the
creenshot dataset.

Next, they apply their proposal of domain adaptation (used in
HREC 2018) (Yuan et al., 2019d, 2018) to classify a 2D screenshot of
3D scene. Concretely, they first train an adversarial network to learn

he representation of a 3D model to be close to the representation of a
orresponding natural image. They treat the natural image domain as
he source domain and the screenshots of the 3D model as the target
omain. A discriminator is used to distinguish between the representa-
ions of the two domains. They train the target representation via an
dversarial loss so that the two representations are indistinguishable
o the discriminator. Then, using the adaptive representation of a 3D
odel, they train a number of simple networks. The predicted labels

rom the networks are assembled via voting to select the final label for
he 3D model.

Because of the wide variation in the design of a 3D scene, it is
ot enough to classify the category of a scene simply by extracting
he feature (from ResNet-50) or from the features of scene attributes
from Places365, even after domain adaptation). This motivates their
roposal to employ object/entity detectors to identify entities related
o certain concepts existing in a screenshot.

In the second step of the proposed method, they first collect a
ataset of natural images from the Internet corresponding to the con-
epts that are related to the 30 scene categories. For example, they
se the query terms such as ‘‘cactus’’ and ‘‘camel’’ to serve the scene
lassification for ‘‘desert’’. They train their set of object detectors from
his dataset of natural images with Faster RCNN (Ren et al., 2015). Then
hey apply their detectors to identify entities that might appear in a
cene, such as ‘‘book’’ (in a library), and ‘‘umbrella’’ (in a beach). By

his way, they further refine their retrieval results.

11
Fig. 13. VMV architecture (Yuan et al., 2019b).

Fig. 14. A 13 sampled scene view images example of an apartment scene model (Yuan
et al., 2019b).

4.1.5. VMV-AlexNet, VMV-VGG: View and majority vote based 3D scene
retrieval algorithm, by J. Yuan, H. Abdul-Rashid, B. Li, T. Wang , and Y.
Lu

They proposed a View and Majority Vote based 3D scene retrieval
algorithm (VMV) (Yuan et al., 2019b) by either employing the AlexNet
(for Query-by-Sketch only) or the VGG-16 model. Its architecture is
illustrated in Fig. 13.

3D scene view sampling. For each 3D scene model, they center
ach 3D scene model in a 3D sphere. They develop a QMacro script pro-
ram to automate the operations of the SketchUp software to perform
he view sampling, and sample 13 scene view images automatically.
hey uniformly arrange 12 cameras on the equator of the bounding
phere of a 3D scene model, and one on the top of the sphere. One
xample is shown in Fig. 14.

Data augmentation. To avoid overfitting issues, before each pre-
raining or training, they employ data augmentation technique (rota-
ions, shifts and flips) (Ye et al., 2016) to enlarge the related dataset’s
ize by 500 times.

Pre-training and fine-tuning. They pre-train the AlexNet1/VGG1
odel on the TU-Berlin sketch dataset (Eitz et al., 2012) for 500 epochs,

nd pre-train AlexNet2/VGG2 on the Places scene image dataset (Zhou
t al., 2018) for 100 epochs. After pre-training, they fine-tune the
lexNet1/VGG1 on the 2D scene sketch/image training dataset, and

ine-tune the AlexNet2/VGG2 on the 2D scene views training dataset,
espectively.

Sketch/image/view classification and majority vote-based la-
el matching. They obtain classification vectors by feeding well-
rained AlexNet1/VGG1 with a 2D scene sketch/image query, or
lexNet2/VGG2 with the 2D scene views testing target dataset. Finally,
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ased on the query’s classification vector and a 3D scene target’s 13
lassification vectors, they generate the rank list for each sketch/image
uery by using a majority vote-based label matching method.

For more details, please refer to Yuan et al. (2019b), while the code
s also publicly accessible.1

.1.6. DRF: Deep random field based semantic 3D scene retrieval algorithm,
y J. Yuan, T. Wang, S. Zhe, Y. Lu, and B. Li

This retrieval algorithm extends the semantic tree-based 3D scene
odel recognition model named Deep Random Field (DRF) proposed

y Yuan et al. (2020), as illustrated in Fig. 15. The motivation of
his retrieval algorithm is to utilize the semantic information exist-
ng in 2D scene images/sketches and 3D scene models to improve
he retrieval performance. To organize such semantic information,
e first build a Scene Semantic Tree (SST) based on the semantic
ntology of WordNet (Miller, 1995) and its available hierarchical tree
f semantically-related concepts. Then, an individual DRF model is
rained respectively on the training query/target dataset of the basic
nd extended benchmark. Finally, a classification and majority vote-
ased matching which is similar to that of VMV (Section 4.1.5, last
tep) is applied to generate a rank list for a query.

DRF adopts the same multi-view convolutional neural network
MVCNN) based recognition framework as Su et al. (2015). However,
esides the standard CNN-related loss, its loss function also includes a
emantic information-based loss during the learning process, by utiliz-
ng the pre-constructed semantic scene tree. The DRF-based retrieval
lgorithm contains the following four steps.

(1) Sampling 3D scene views: a set of 13 color sample scene views
re rendered for each 3D scene model by uniformly setting 12 cameras
n the bounding sphere of the model with an elevation angle of 20
egrees, and 1 camera on the north pole.

(2) Building a Scene Semantic Tree (SST): based on all the 2D/3D
cene sketches/images/models available in the training query and tar-
et datasets, a Scene Semantic Tree (SST) is constructed to encodes the
emantic class and attribute (i.e., scene object) information existing in
he 2D/3D scene data. To build the tree, firstly, the YOLOv3 (Redmon
nd Farhadi, 2018) model is employed to detect the objects available in

1 URL: http://orca.st.usm.edu/~bli/Scene_SBR_IBR/index.html.
12
each scene sketch/image/view. One example for a kitchen view image
and the related definition of object occurrence distribution can be found
in Fig. 15.

(3) Training a DRF query/target classification model respec-
ively: The VGG16 model is used, while its joint loss function of the
RF model is defined as follows,

= 𝜆DNN + (1 − 𝜆)SST({𝑃 (𝑂𝑖|𝑆)}, {𝑅𝑖 ∗ 𝑐𝑖}), (4)

where, DNN is the standard loss of a Deep Neural Network (DNN)
classifier; SST is the Scene Semantics Tree-related semantic loss. 𝜆 is
a hyperparameter, where 𝜆 ∈ [0, 1]. The object occurrence probability
{𝑃 (𝑂𝑖|𝑆)} is learned based on the corresponding training query/target
dataset. It is the conditional probability that an object class 𝑂𝑖 appears
in a candidate scene 𝑆, and serves as the scene semantics information
of 𝑆. 𝑅𝑖 is the Lesk (Lesk, 1986)-based semantic relatedness between
𝑂𝑖 and 𝑆. 𝑐𝑖 is the number of occurrences of 𝑂𝑖 detected by YOLOv3
in a training scene sketch/image/view. Both losses are scaled to [0, 1]
before combination.

(4) Sketch/image/view classification and majority vote-based
label matching: it is almost the same as the last step of Section 4.1.5.
Please refer to it for more details.

For the original DRF related code, data, and experimental results,
please refer to Yuan et al. (2020).

4.2. Query-by-image retrieval

4.2.1. BoW: Bag-of-words framework based retrieval, M. Tran, V. Ninh, T.
Le, K. Nguyen, V. Ton-that, N. Bui, T. Do, V. Nguyen, M. N. Do, and A.
Duong

The same participating group as that of Section 4.1.3 contributed
another two runs based on the Bag-of-Words framework. In this ap-
proach, they do not train a model to classify a 2D scene image or a
3D model. Instead, their non-learning based method takes advantage
of their framework on Bag-of-Word retrieval (Nguyen et al., 2015;
Limberger et al., 2017) to determine the category of a 2D scene (query)
and a 3D model (target). They also employ the same method to generate
a set of useful views for each 3D model (see Section 4.1.3).

For both 2D scene images and 3D model views, they follow the same

retrieval process. First, they apply the Hessian Affine detector to detect

http://orca.st.usm.edu/~bli/Scene_SBR_IBR/index.html
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Fig. 16. Overview of scene sampling and CVAE distribution learning.

the interest points 𝑁 in each image, either a 2D scene image or a 2D
view of a 3D model. They use RootSIFT (Arandjelovic and Zisserman,
2012) without angle for keypoint descriptors and train the codebook
using an approximate K-Means algorithm with 1 million codewords.
They perform the quantization on all the training images with 𝑘-d tree
ata-structure to calculate the BoW representation of each image. They
lso perform soft assignment with 3 nearest neighbors, L2 asymmet-
ic distance measurement (Zhu et al., 2013), TF–IDF weighting, and
verage pooling for each representation.

For each unlabeled 2D scene image, they retrieve a rank list of
elevant images. Then they determine the top-𝑀 most voted labels from
hose of the retrieved images and assign these candidate labels to the
nput image. In this task, they choose 𝑀 = 1 or 2. Similarly, they also

determine the top-𝑀 most voted labels for each 2D view, then assign
the most reliable label to the corresponding 3D model.

The codebook training module using Python 2.7 is deployed on a
computer with a Ubuntu 14.04 OS and 2.4 GHz Intel Xeon E5-2620 v3
CPU, and 64 GB RAM. It takes 2 h to create a codebook with 1 million
visual words from 15 million features. The retrieval process in Matlab
R2012b with feature quantization and dissimilarity matrix calculation
is performed on a computer with a Windows Server 2008 R2 OS, a
2.2 GHz Intel Xeon E5-2660 CPU, and 12 GB RAM. It takes less than
1 s to perform the retrieval for each image.

There are two runs in this method. In this first run, they determine
only one label for each scene image and only one label for each 3D
model. In the second one, they determine up to two labels for each
scene image and up to two labels for each 3D model.

4.2.2. CVAE: Conditional variational autoencoders for image based scene
retrieval, by P. Rey, M. Holenderski, D. Jarnikov, and V. Menkovski

Overview. Their proposed approach consists of image-to-image
comparison with Conditional Variational AutoEncoders (CVAE)
(Kingma et al., 2014), as shown in Fig. 16. The CVAE is a semi-
supervised method for approximating the underlying generative model
that produced a set of images and their corresponding class labels in
terms of the so-called unobserved latent variables. Each of the input
images is described in terms of a probability distribution over the latent
variables and the classes.

Their approach consists of using the probability distributions cal-
culated by the CVAE for each image as a descriptor. They compare
an image query and the 3D scene renderings by using the distribu-
tions obtained from the CVAE. Their method consists of several steps:
data pre-processing, training and retrieval described in the following
subsections.

Data preprocessing. They obtain thirteen renderings for each of
the 3D scenes. Twelve views are rendered at different angles around the
scene as in Su et al. (2015) and one view is obtained from the 3D scene’s
predefined view once it is loaded into the SketchUp software. Their
training dataset consists of these renderings together with the training
images provided. All images are resized to a resolution of 64 × 64 with
hree color channels and all pixel values are normalized to the interval
0, 1]. Any image 𝑥 is a part of the data space set 𝑋 = [0, 1]64×64×3.
13
They have performed image data augmentation during training using a
horizontal flip to all images.

Training. The CVAE consists of an encoder and a decoder neural
network. The encoder network calculates from an input image 𝑥 ∈ 𝑋
the parameters of a probability density 𝑞𝜙(𝑧|𝑥) over the latent space

= R𝑑 and a density 𝑞𝜙(𝑦|𝑥) over the thirty class values in 𝑌 =
1, 2, 3,… , 30} where 𝜙 represents the network parameters. On the

other hand, the decoder network receives as an input a sampled latent
variable 𝑧 ∼ 𝑞𝜙(𝑧|𝑥) and a sampled class label 𝑦 ∼ 𝑞𝜙(𝑦|𝑥) and returns

reconstruction of the original image 𝑥 which is interpreted as the
ocation parameter of a normal distribution over the data space 𝑋.

The distribution 𝑞𝜙(𝑧|𝑥) is chosen to be a normal distribution over
and 𝑞𝜙(𝑦|𝑥) a categorical distribution over 𝑌 . The probabilistic model

sed corresponds to the M2 model described in the article (Kingma
t al., 2014). Both the encoding and decoding neural networks are
onvolutional.

The CVAE is fed with batches of labeled images during training. The
oss function is the sum of the negative Evidence Lower Bound (ELBO)
nd a classification loss. The ELBO is approximated by means of the
arametrization trick described in Kingma et al. (2014) and Kingma
nd Welling (2013) and represents the variational inference objective.
he classification loss for their encoding distributions over 𝑌 corre-
ponds to the cross entropy between the probability distribution over

with respect to the input label.
Retrieval. Each image 𝑥 ∈ 𝑋 can be described as a conditional

oint distribution over 𝑍 × 𝑌 . Assuming that the latent variable 𝑧 and
the categorical value 𝑦 for an image 𝑥 are independent, this joint
probability density corresponds to 𝑞𝜙(𝑧, 𝑦|𝑥) = 𝑞𝜙(𝑧|𝑥)𝑞𝜙(𝑦|𝑥).

The similarity 𝐷 between an input image query 𝑥∗ ∈ 𝑋 and a 3D
cene represented by its 𝑁 rendered images 𝑆 = {𝑥𝑟}𝑁𝑟=1 is given by the

minimum symmetrized cross entropy 𝐻𝑠 between the query and the
rendered images’ probability distributions (see Fig. 16).

𝐷(𝑥∗, 𝑆) = min
𝑟∈{1,2,…,13}

𝐻𝑠(𝑞𝜙(𝑧|𝑥∗), 𝑞𝜙(𝑧|𝑥𝑟)) + 𝛼𝐻𝑠(𝑞𝜙(𝑦|𝑥∗), 𝑞𝜙(𝑦|𝑥𝑟)) (5)

The parameter 𝛼 corresponds to a weighting factor taking into
ccount the importance of label matching. They have used a value of
= 64 × 64 × 3. A ranking of 3D scenes is obtained for each query

ccording to this similarity.
Five runs. They have sent five submissions corresponding to meth-

ds who differ only on the architecture of the encoding and decoding
eural networks. These are described as follows:

1. CVAE-(1,2,3,4): CVAE with different CNN architectures for the
encoder and decoder.

2. CVAE-VGG: CVAE with features from pre-trained VGG (Kalli-
atakis, 2017) on the Places data set (Zhou et al., 2018) as part
of the encoder.

. Results

For clarity, we conduct comparative evaluations with respect to the
wo different sketch/image-based 3D scene retrieval benchmarks that
e have built. We measure retrieval performance based on the seven
etrics described in Section 3.3: PR, NN, FT, ST, E, DCG and AP.

.1. Scene_SBR_IBR_2018 benchmark

Based on the our Scene_SBR_IBR_2018 benchmark described in
ection 3.1, we organized two SHREC’18 tracks on the topics of either
D scene sketch or 2D scene image-based 3D scene retrieval, for which
e refer to as SceneSBR2018 and SceneIBR2018. Fig. 17 and Table 4

ompare the three learning-based and one non-learning based Query-
y-Sketch retrieval methods submitted to SceneSBR2018, as well as
he three learning-based and two non-learning based Query-by-Image
etrieval methods submitted to SceneIBR2018, based on the corre-
ponding testing and complete datasets of our Scene_SBR_IBR_2018
enchmark. We also evaluate the newly contributed learning-based
emantic approach DRF together with them.
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.1.1. Peer performance evaluation
Query-by-Sketch retrieval. We first perform a comparative eval-

ation of the eight runs of the four methods submitted to the Sce-
eSBR2018 track by the three groups. As shown in the aforementioned
igure and table, in the learning based category, Tran’s RNSRAP algo-
ithm (run 2) performs the best, followed by Liu’s TCL method (run 3),
hile the overall performance of all the track participating learning-
ased methods are close to each other. We find that the performance of
uan’s DRF method is relatively lower, which should be due to the fact
hat it is an ongoing research approach and not optimized yet. In the
on-learning based category, there is only one participating method,
hose performance is much inferior if compared with learning-based
nes. More details about the retrieval performance of each individual
uery of every participating method can be found on the SceneSBR2018
rack homepage (Yuan et al., 2019d).
 l

14
Though we cannot directly compare non-learning based approaches
nd learning-based approaches together, we have found much more
romising results in learning-based approaches. The CNNs contribute
lot to the top performance of those three learning-based approaches.
onsidering many latest sketch-based 3D model retrieval methods uti-

ize deep learning techniques, we regard it as the currently most
opular and promising machine learning technique for 2D/3D feature
earning and related retrieval. In fact, the three methods that adopt
ertain deep learning models also perform well when adapted to this
hallenging benchmark.

Finally, we classify all the SceneSBR2018 track participating meth-
ds with respect to the techniques employed: all the four participating
roups (Li, Liu, Tran, Yuan) utilize local features. All of the four groups
Li, Liu, Tran, Yuan) employ deep learning framework to automatically
earn the features. But Tran further applies regular transformations and
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Table 4
Query-by-Sketch and Query-by-Image performance metrics comparison on our Scene_SBR_IBR_2018 benchmark.

Participant Method NN FT ST E DCG AP

Query-by-Sketch

Learning-based methods

Li MMD-VGG 0.771 0.630 0.835 0.633 0.856 0.685

Liu
TCL1 0.643 0.582 0.753 0.579 0.810 0.606
TCL2 0.814 0.630 0.794 0.626 0.860 0.688
TCL3 0.800 0.640 0.801 0.633 0.861 0.691

Tran
RNSRAP1 0.729 0.658 0.659 0.637 0.826 0.689
RNSRAP2 0.786 0.729 0.734 0.707 0.864 0.757
RNSRAP3 0.729 0.652 0.766 0.637 0.834 0.707

Yuan DRF 0.200 0.621 0.740 0.618 0.745 0.576

Non-learning based methods

Li VGG 0.336 0.262 0.428 0.151 0.684 0.243

Query-by-Image

Learning-based methods

Li MMD-VGG 0.910 0.750 0.899 0.750 0.929 0.803

Liu
TCL1 0.823 0.689 0.856 0.687 0.900 0.733
TCL2 0.871 0.751 0.888 0.759 0.927 0.803
TCL3 0.864 0.760 0.893 0.762 0.927 0.809

Tran
RNIRAP1 0.864 0.760 0.893 0.762 0.927 0.809
RNIRAP2 0.944 0.882 0.890 0.854 0.954 0.893
RNIRAP3 0.936 0.875 0.941 0.850 0.958 0.902

Yuan DRF 0.203 0.547 0.767 0.645 0.762 0.598

Non-learning based methods

Li VGG 0.719 0.416 0.585 0.291 0.803 0.414

Tran BoW1 0.575 0.316 0.396 0.272 0.735 0.360
BoW2 0.501 0.311 0.469 0.196 0.719 0.298
adversarial training, while Yuan utilizes available semantic information
as well. On the other hand, Li and Liu directly compute the 2D–3D
distances based on the distributions of sketches and models by using the
Euclidean distance metric, while Tran and Yuan conduct the retrieval
based on 2D/3D classification.

Query-by-Image retrieval. Similarly, we perform a comparative
valuation of the ten runs of the five methods submitted to
ceneIBR2018 track by the three groups, together with one run from
he new method DRF. As shown in the aforementioned figure and
able, in the learning-based category, Tran’s RNIRAP algorithm (run
) performs the best, closely followed by Li’s MMD-VGG and Liu’s
CL method (run 3), which are close to each other as well. That is,
he performance of all the three learning-based methods are similar to
ach other. DRF’s performance is still relatively lower than those three
HREC’18 participating methods. In the non-learning based category,
i’s VGG algorithm outperforms Tran’s BoW method. For each partici-
ating method, more details about the rank list and evaluated retrieval
erformance of each query can be found on the SceneIBR2018 track
ebsite (Abdul-Rashid et al., 2019a).

Although it is not fair to compare non-learning based approaches
ith learning-based approaches, it is easy to find that the learning-
ased approaches have produced much more appealing accuracies. In
ran’s top-performing learning based approach RNIRAP, in terms of au-
omatically learning the features, the deep learning approach Place365-
NN (Zhou et al., 2018) contributes a lot to its better accuracy among
he learning based approaches.

Finally, all the five SceneIBR2018 track participating methods are
ategorized according to the techniques they employed. All the three
earning-based methods (MMD-VGG, TCL, RNIRAP) from three par-
icipating groups (Li, Liu, Tran) utilize deep learning techniques to
utomatically learn local features. Therefore, all of the three groups
ave considered the deep learning framework for feature learning. DRF
lso adopts a deep learning-based approach to learn local features. In
he non-learning based category, Tran’s BoW method employs the Bag-

f-Words, while Li’s VGG method uses a pre-trained model VGG to
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directly extract local features. Only Tran’s RNIRAP and Yuan’s DRF
utilize a classification-based 3D model retrieval framework.

5.1.2. Cross-track performance evaluation
As can be seen from Fig. 17 and Table 4, both the SceneSBR2018

and SceneIBR2018 tracks have almost the same four participating
methods. However, for the same method each performance metric
achieved on the SceneIBR2018 track is significantly better than that
on the SceneSBR2018 track, while its Precision–Recall curve is also
often higher on the image track. We believe at least the following three
differences of SceneIBR2018 contribute to its better performance: (1) it
has a 40 times larger query dataset which is very helpful for the training
of the deep neural networks; (2) compared with the sketch queries
of SceneSBR2018, SceneIBR2018’s image queries contain much more
accurate 3D shape information; and (3) each of SceneIBR2018’s image
queries has additional color information to correlate to the texture
information existing in the 3D scene models. Therefore, there is a much
smaller semantic gap to bridge between the query and target datasets
for the SceneIBR2018 track, while the SceneSBR2018 track is much
more challenging due to a big semantic gap there. It is also interesting
to find that DRF does not follow this trend since it achieves similar
performance on both tracks, in terms of all the evaluation metrics
including Precision–Recall plot. We believe this is due to the semantic
retrieval approach targets bridging the semantic gap between 2D scene
sketches/images and 3D scenes by incorporating the WordNet-based
Scene Semantic Tree into the retrieval process, which helps it to achieve
consistency in its retrieval performance on either track.

5.2. Scene_SBR_IBR_2019 benchmark

Similarly, based on the our Scene_SBR_IBR_2019 benchmark de-
scribed in Section 3.2, we organized two SHREC’19 tracks on 2D
scene sketch/image-based 3D scene retrieval, for which we refer to
as SceneSBR2019 and SceneIBR2019. Fig. 18 and Table 5 compare

the two learning-based Query-by-Sketch retrieval methods submitted
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to SceneSBR2019, as well as the three learning-based Query-by-Image
retrieval methods submitted to SceneIBR2019, based on the corre-
sponding testing and complete datasets of our Scene_SBR_IBR_2019
benchmark. Likewise, five new runs coming from the newly intro-
duced approach DRF and SHREC’18 participating method TCL are
also evaluated together with the 12 runs of SHREC’19 participating
methods.

5.2.1. Peer performance evaluation
Query-by-Sketch retrieval. In this subsection, we comparatively

evaluate the six runs of the four methods submitted by the four groups.
All the four methods are learning-based methods. As shown in the
Fig. 18 and Table 5, Bui’s RNSRAP algorithm (run 2) performs the best,
followed by their RNSRAP (run 1), a close pair of Yuan’s DRF and WYL’s
TCL1, and VMV-VGG. More details about the retrieval performance of
each individual query of every evaluated method are available on the
SceneSBR2019 track homepage (Yuan et al., 2019a). An interesting
finding is about DRF and VMV-VGG: they use the same CNN model
(VGG) and both adopt a classification-based framework, while the
main difference is that DRF integrates a semantic loss during its model
training process. It is evident to find that there is a very significant
improvement in the performance after utilizing semantic information.
For example, there is a 78.6% and 10.3% increase in terms of AP on the
sketch and image track, respectively. In terms of Precision–Recall plot
performance, DRF also outperforms VMV-VGG by a non-trivial margin.

All the four evaluated methods utilized CNN models, which con-
tribute a lot to the achieved performance of those two learning-based
approaches. Since deep learning techniques are widely utilized in many
latest sketch-based 3D model retrieval methods, it can be regarded
as the currently most popular and promising machine learning tech-
nique for 2D/3D feature learning and related retrieval. In fact, we
can see that the deep learning models which are adopted in these
four methods, especially Bui’s method, perform well in dealing with
this challenging retrieval task. They improved their method used in
the SceneIBR2018 track by utilizing object-level semantic information
for data augmentation and refining retrieval results, which helps to
advance the retrieval performance further. The significant impact on
the retrieval performance by utilizing semantic information has also
been reflected by the above comparative evaluation of DRF and VMV-
VGG. Considering there is still much room for further improvement in
the retrieval accuracy as well as the scalability issue, we believe it is
very promising to further propose a practical retrieval algorithm for
large-scale 2D sketch-based 3D scene retrieval by utilizing both deep
learning and scene semantic information.

Finally, we classify all the four evaluated methods based on the
techniques adopted: all of them utilize local features, employ a deep
learning framework to automatically learn the features, and apply
regular transformations (e.g., flipping, translation, rotation). While,
Bui further applies adversarial training as well. On the other hand,
Liu’s TCL adopts a direct feature matching approach, while Yuan’s two
approaches (VMV and DRF) mainly adopt an image/sketch classifica-
tion framework and then uses majority vote-based label matching to
generate the retrieved result. However, Bui conducts the retrieval based
on both 2D sketch recognition and 3D model classification, as well as
both object detection and recognition.

Query-by-Image retrieval. As can be seen in the aforementioned
figure and table, Bui’s RNIRAP algorithm (run 2) performs the best,
followed by TCL2, DRF, the baseline method VMV-VGG, TCL1, and the
CVAE method (CVAE2). More details about the retrieval performance
of each individual query of every evaluated method are available on
the SceneIBR2019 track website (Abdul-Rashid et al., 2019b). Here, we
want to have a closer study on TCL and DRF. Among all the evaluated
approaches, only TCL proposes a so-called triplet-center loss to improve
extracted features’ discriminative power, while all other five methods
completely (i.e., RNIRAP (ResNet), VMV (VGG), and DRF (VGG)) or
partially (i.e., CVAE) utilizes a traditional classification loss. The triplet-
center loss optimizes each class’ center such that relevant samples are
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closer to it than the centers of other classes. It is obvious to find out the
more discriminative power of such approach for retrieval purpose based
on its superior performance than the classification loss-based models
(i.e., pure VGG/ResNet-based ones). Again, DRF achieves a significant
jump (i.e. 10.3% increase in AP) in its performance after integrating a
semantic loss with a traditional classification loss during its VGG-based
model training. Therefore, it can be anticipated that an integration
of a more powerful model, like the triplet-center loss based TCL, and
a semantic retrieval framework, such as the semantic tree-based DRF
approach, will push the limit of such retrieval framework’s performance
even further.

Firstly, all the three methods submitted to the SceneIBR2019 track
by the three participating groups and all the currently evaluated six
methods are leaning-based methods, while there is no submission in-
volving a non-learning based approach during the SceneIBR2019 track
time. In addition, all of the six methods have employed a deep neural
networks based learning approach.

Secondly, we could further classify the submitted approaches at a
finer granular level. RNIRAP, VMV-VGG, and DRF utilize CNN models
and a classification-based approach, which contribute a lot to their
better accuracies. While, TCL utilizes a trained DNN model to extract
feature vectors to perform direct feature matching for retrieval; and
the CVAE-based method uses a conditional VAE generative model and
resulted latent features to measure the 2D–3D similarities.

Therefore, according to these two years’ SHREC tracks (SHREC’19
and SHREC’18) on this topic, deep learning-based techniques are still
the most promising and popular approach in tackling this new and
challenging research direction. To further improve the retrieval perfor-
mance, Bui used scene object semantic information during the stages
of data augmentation and retrieval results refinement.

5.2.2. Cross-track performance comparison
Except CVAE, these two tracks share other two participating meth-

ods (with minor differences). It is the second time that we have
found that generally the performance achieved in the ‘‘Image-Based
3D Scene Retrieval (IBR)’’ track is significantly better, compared with
that achieved on the back to back ‘‘Sketch-Based 3D Scene Retrieval
(SBR)’’ track. This should be attributed to the same reasons as we
have concluded in Section 5.1.2: IBR has a much larger training query
dataset which contains images, instead of sketches, that have much
more details and color information as well, which makes the semantic
gap between the 2D image query and 3D scene targets much smaller. It
is also the second time to find that DRF performs differently from the
SHREC’19 participating methods. It achieves very similar cross-track
performance on all the seven evaluation metrics (NN, FT, ST, E, DCG,
AP, and Precision–Recall plot) on the SHREC’19 tracks, which should
be attributed to the same reason as mentioned in Section 5.1.2.

5.3. Timing performance evaluation

Table 6 lists the running time information in terms of average
response time per query for all the 15 evaluated sketch/image-based
3D scene retrieval algorithm. We define response time as the time
difference between the start of a retrieval after submitting the query
and the end of the retrieval when a rank list is generated for it. It can be
found that most algorithms are very fast and can meet the requirement
for real-time retrieval. Typically, it takes from several hours (i.e. ap-
proximately 6 h for CVAE on the SHREC’19 image track) to several days
(i.e. around 3 days for TCL1 on the same SHREC’19 image track) for the
training on the SHREC’18/SHREC’19 track benchmarks. However, since
they are offline and all the times are still within a reasonable range,
we do not directly compare them in Table 6. In a word, we think most
evaluated algorithms have excellent scalability performance in terms of
efficiency for large-scale 3D scene retrieval scenarios.
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Fig. 18. Query-by-Sketch and Query-by-Image Precision–Recall diagram performance comparisons on our Scene_SBR_IBR_2019 benchmark.
Table 5
Query-by-Sketch and Query-by-Image performance metrics comparison on our Scene_SBR_IBR_2019 benchmark.

Participant Method NN FT ST E DCG AP

Query-by-Sketch

Learning-based methods

Bui RNSRAP1 0.914 0.668 0.728 0.665 0.825 0.581
RNSRAP2 0.943 0.818 0.870 0.814 0.913 0.786

Wang &Yuan & Liu (WYL) TCL1 0.610 0.345 0.486 0.350 0.680 0.343

Yuan VMV-AlexNet 0.024 0.046 0.084 0.047 0.386 0.057
VMV-VGG 0.081 0.281 0.369 0.280 0.533 0.243

Yuan DRF 0.148 0.500 0.588 0.494 0.670 0.434

Query-by-Image

Learning-based methods

Bui RNIRAP1 0.845 0.620 0.674 0.618 0.791 0.544
RNIRAP2 0.865 0.749 0.792 0.745 0.863 0.722

Rey

CVAE-VGG 0.071 0.054 0.099 0.055 0.405 0.054
CVAE1 0.235 0.187 0.295 0.189 0.532 0.172
CVAE2 0.272 0.217 0.331 0.219 0.560 0.201
CVAE3 0.199 0.154 0.251 0.157 0.507 0.145
CVAE4 0.211 0.149 0.246 0.152 0.505 0.142

Wang &Yuan & Liu (WYL) TCL1 0.632 0.375 0.521 0.376 0.706 0.378
TCL2 0.677 0.403 0.551 0.403 0.728 0.407

Yuan VMV-VGG 0.122 0.458 0.573 0.452 0.644 0.390

Yuan DRF 0.094 0.505 0.595 0.500 0.667 0.430
5.4. Scalability performance evaluation

To evaluate an algorithm’s scalability to a larger benchmark, we
plan to compare its performance on our two benchmarks
Scene_SBR_IBR_2018 and Scene_SBR_IBR_2019. From Tables 4 and 5,

e can find that the top-performing algorithms RNSRAP and RNIRAP,
s well as TCL (run1) and the new method DRF have available results
n both benchmarks.

For the best-performing approaches RNSRAP and RNIRAP, we need
o mention that there are some further improvement in their 2019
ersion if compared with their 2018 version, which can be found in
ections 4.1.3 and 4.1.4. For example, some changes in RNIRAP are
isted below. (1) use ResNet50 in SceneIBR2019, in comparison to
he ResNet18 model used in SceneIBR2018; (2) to represent the deep
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learning feature vector, they elevated its dimension from 102 which
was used in SceneSBR2018 to 512 in SceneSBR2019; (3) they also
increased the dimension of the two hidden layers of the classifier from
less than 200 to 1024. For RNSRAP, there is a significant change in their
sketch classification in ScceneSBR2019: a query expansion technique
was added by searching semantically related natural images and then
added their transformed sketch-like images into the sketch training
dataset for the training of ResNet50 for feature extraction.

Now, we consider all the four methods (RNSRAP, RNIRAP, TCL and
DRF) together. In a direct comparison to the results from SceneIBR2018,
SceneIBR2019 results do not preform as well for each of them, in-
cluding the top methods RNSRAP and RNIRAP even though after
several improvements mentioned above. If we compare their Precision–

Recall (PR) plots, we can find that it is common the Precision (P)
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Table 6
Available timing information comparison of the five Query-by-Sketch and seven Query-by-Image retrieval algorithms: 𝑇𝑆 / 𝑇𝐼 is the average response time (in seconds) per query for
a Query-by-Sketch / Query-by-Image retrieval method. ‘‘R’’ denotes the ranking order of all the runs within their respective type of retrieval (Query-by-Sketch, or Query-by-Image).
‘‘-’’ means not applicable.

Contributor (with computer configuration) Method Language Scene_SBR_IBR_2018 Scene_SBR_IBR_2019

𝑇𝑆 𝑇𝐼 𝑇𝑆 𝑇𝐼
Li (CPU: Intel(R) @3.3 GHz (single core); Memory: 8 GB; OS:
Windows 7)

VGG C++, Matlab 2.29 2.41 – –
MMD-VGG C++, Matlab 10.14 33.93 – –

Liu (CPU: Intel(R) Core i3-2350M @2.3 GHz; GPU: 1 x NVIDIA
Titan Xp; Memory: 6 GB; OS: Windows 2003 32-bit)

TCL1 Python 0.06 0.09 0.04 0.04
TCL2 Python 0.09 0.08 – 0.04
TCL3 Python 0.09 0.07 – –

Tran & Bui (CPU: Intel(R) Core i5-6198DU @2.30 GHz; GPU: 1 x
NVIDIA GeForce 920MX; Memory: 8 GB; OS: Ubuntu)

RNSRAP Python 0.01 – 0.01 –
RNIRAP Python – 0.01 – 0.01

(for BoW only): CPU: Intel(R) Xeon E5-2660 @2.2 GHz; Memory:
12 GB; OS: Windows Server 2008 R2

BoW1 Python – 0.01 – –
BoW2 Python – 0.01 – –

Yuan (CPU: Intel(R) Core i7 6850K @3.6 GHz (6 cores); GPU: 1 x
NVIDIA Titan Xp; Memory: 32 GB; OS: Windows 10)

VMV-AlexNet C++, Matlab – – 0.02 –
VMV-VGG C++, Matlab – – 0.06 0.04
DRF C++, Python 0.02 0.03 0.05 0.03

Rey (CPU: Intel(R) Xeon(R) E5-2698v4 @2.2 GHz (4 processors, 20
cores); Memory: 256 GB; OS: Ubuntu 18.04)

CVAE Ruby, Python – – – 0.09
CVAE-VGG Ruby, Python – – – 0.22
values will drop much more quickly from the start of the PR plots
on the SHREC’19 tracks than those on the SHREC’18 tracks for all
the evaluated methods. These are to be expected since the 10 scene
categories in the SceneIBR2018 benchmark are distinct and have few
correlations. In fact, this trend is consistent in the SceneSBR2019 as
well, which can be found the generally lower performance achieved
on the more challenging Scene_SBR_IBR_2019 benchmark. This has
also been explored by us in our prior work (Yuan et al., 2019b): the
significant drop in performance can be attributed to the introduction
of many correlating scene categories.

Therefore, this raise our interest in developing more robust 3D
scene retrieval algorithms which are scalable in a large-scale retrieval
scenario.

6. Conclusions and future work

6.1. Conclusions

2D sketch/image 3D scene retrieval is a new, challenging yet
important research direction in 3D object retrieval. It has a large
amount of related applications. To promote the research in 3D scene
retrieval, we built the first 2D scene sketch/image-based 3D scene re-
trieval benchmark Scene_SBR_IBR_2018 and organized two SHREC’18
tracks (Yuan et al., 2018; Abdul-Rashid et al., 2018). In 2019, we
have further extended the number of categories from 10 to 30 and
built the most diverse and comprehensive 2D/3D scene dataset to date
Scene_SBR_IBR_2019, and further extended the line of our SHREC
related research work on sketch/image-based 3D shape retrieval (i.e.,
SHREC’12 (Li et al., 2012, 2014a), SHREC’13 (Li et al., 2013, 2014a),
SHREC’14 (Li et al., 2014b, 2015), SHREC’16 (Li et al., 2016),
SHREC’18 (Yuan et al., 2018; Abdul-Rashid et al., 2018)) by running
another two related tracks (Yuan et al., 2019c; Abdul-Rashid et al.,
2019) in SHREC’19.

Participating groups of these four tracks have explored many dif-
ferent approaches to solve the intractable task of 2D to 3D scene
understanding. Currently, six Query-by-Sketch and eight Query-by-
Image 3D scene retrieval algorithms have been evaluated on our two
benchmarks, including a newly incorporated semantic retrieval method
DRF for each track. We have conducted a comprehensive comparison
of all these 14 retrieval methods by evaluating them on the two
benchmarks. We also made the benchmarks, evaluation results and
evaluation toolkits publicly available at our websites (Yuan et al.,
2019d; Abdul-Rashid et al., 2019a; Yuan et al., 2019a; Abdul-Rashid
et al., 2019b). We also review the related techniques and datasets, and
provide a method description for each retrieval algorithm in the paper.
We believe all of these will become an important and useful resource for
the researchers that are interested in this topic as well as many related
applications.
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6.2. Future work

The four tracks not only help us identify state-of-the-art methods,
but also existing problems, current challenges and future research
directions for this important, new and interesting research topic.

• Building a large-scale and/or multimodal 2D scene-based
3D scene retrieval benchmarks. Our proposed Scene_SBR_IBR_
2018 contains only ten scene classes, which is one of the reasons
that all the three deep learning-based participating methods have
achieved excellent performance. Our Scene_SBR_IBR_2019, even
as the largest benchmark for 2D scene image-based 3D scene
retrieval, has only thirty scene categories. This again can par-
tially explain the still relatively good performance that has been
achieved by the top deep learning-based participating methods.
However, we did see an apparent drop in the overall performance.
Therefore, testing the scalability of a retrieval algorithm with
respect to a large-scale retrieval scenario and various 2D/3D
data formats is very important for many practical applications.
Therefore, our next target is to build a large-scale benchmark
which supports multiple modalities of 2D queries (i.e. images and
sketches) and/or 3D model targets (i.e. meshes, RGB–D, LIDAR,
and range scans). Then, we will invite people to adapt and run
their algorithms on the new benchmark again to evaluate their
scalability in a large-scale and/or multimodal 3D scene retrieval
scenario.

• More realistic 3D scenes models. Some of the SketchUp 3D
scene models that we downloaded from 3D Warehouse (Trimble,
2018) are not as realistic as relevant 2D scene images. For ex-
ample, in the ‘‘mountain‘‘ category, the ratio between trees and
mountains is not real, which could reduce the 3D scene retrieval
accuracy. Due to this reason, a more realistic 3D scene dataset is
also necessary.

• Semantics-driven 2D scene sketch/image-based 3D scene re-
trieval. Since a scene is composed of one or more objects, the
semantic information existing in 2D scene sketches and 3D scene
models and the relationships between objects or between objects
and related scenes are very useful for 3D scene retrieval. For
instance, Bui’s team utilized the known semantic information
for data augmentation, e.g., they manually collected and added
‘‘camel’’ and ‘‘cactus’’ images to the ‘‘desert’’ category during
training. They also employed object detection and recognition to
refine their retrieval results. There is a lot of semantic information
in both the 2D sketch/image queries and the 3D scene model
targets in our two scene retrieval benchmarks. To improve either
the accuracy or efficiency of a 2D scene sketch/image-based 3D
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scene retrieval algorithm, we need to consider utilizing the se-
mantic information. However, we find that only one participating
group has considered this, probably due to limited time for the
competition. Therefore, we can expect even better performance if
they also incorporate the semantic information into their meth-
ods. We also believe that related applications (i.e. online 3D
scene retrieval, 3D Entertainment contents development, and au-
tonomous driving cars) will benefit a lot from the retrieval based
on extracted semantic information in both the queries and targets.
These have been partially proved by the DRF approach (Yuan
et al., 2020).

• Extending the feature vectors by incorporating the geolo-
cation estimation features. Photo geolocation estimation is to
predict the GPS coordinates for a photo image. This information
is helpful in classifying certain scene images. By classifying the
earth’s geographical cells based on deep learning, a recent work
conducted by Müller-Budack et al. (2018) has shown that photo
geolocalization without any limitations can work to some extend
reliably, even though with a small training dataset. Therefore, it
is promising to achieve even better results by taking the scene’s
geographical information into account when forming a feature
representation for the retrieval.

• Classification-based retrieval. It can be found that class-based
or classification-based 3D model retrieval (i.e. RNIRAP, VMV-
VGG, and DRF) is potential to achieve even better performance
compared to other algorithms which utilize a more traditional
3D model retrieval pipeline. This also coincides with our prior
findings related to class-based 3D model retrieval (Li and Johan,
2013) or semantic information-based 3D model retrieval (Li et al.,
2017). This relatively new framework contributes to better NN,
FT and the overall performance metrics such as DCG and AP.

• Application-oriented 2D scene-based 3D scene retrieval. It
targets developing a 2D scene-based 3D scene retrieval dedicated
for a related application, such as creating 3D scene contents
for a new 4D immersive program, like Disney World’s Avatar
Flight of Passage Ride (Wikipedia, 2019; Attractions, 2019; the
Magic, 2019). Other example applications include but not limited
to retrieving domain-specific 3D scenes such as indoor/outdoor
scenes, sand table models for real estate applications, rainforest
scenes for cartoon or movie production. For instance, automati-
cally retrieving scenes from movies, computer games, and educa-
tional content by utilizing text and speech recognition to extract
semantic scene information. This will help us build much larger
benchmarks as well.

• Deep learning models specifically designed for 3D scene re-
trieval. From the method evaluations, we can find that deep
learning techniques have great potential in achieving promising
retrieved performance. However, we can find that all the related
algorithms adapt the existing neural network models designed
for other purposes (e.g., objects classification), thus lacking con-
siderations of the characteristics of this scene retrieval problem.
Therefore, it is promising to achieve even better retrieval result
if we develop new deep learning models which fit this scenario
well.
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